EECS 182/282A Lecture 20: Pretraining and Fine-Tuning

Scribes: Keaton Elvins, Raghav Ramanujam

Tokens

Instructor: Anant Sahai

1. Tokenizer: In the typical approach for sequence models, the input is first passed to a
tokenizer. This parses the input sequence into a series of discrete tokens (i.e. Token-1,
Token-72, Token-985...). Once this sequence of discrete objects is generated, they are
then passed to a learnable look-up table.

Aside: For NLP, the byte pair encoding scheme is typically used for this step,
which entails repeatedly grouping the most common occurring pair of characters
together until the desired “token budget” is reached (similar to the grouping in
Huffman encoding but in reverse). This process addresses the issue of encoun-
tering out-of-vocabulary words since they will just be broken down into common
character sub-groups (read more here).

2. Look-Up Table: At this step, each token gets mapped to a vector, which becomes
the actual input that the transformer/sequence model sucks up. These vectors are all
learnable, so this effectively adds (# of tokens x size of input vector) parameters.

Model
Outputs

Tokenizer

Transformer (Many Layers)

Learnable Look-Up Table (ID — Vector)

1037 17453 14726 19379 12758 2006 2293
2) substitute tokens with their ids

a visually stunning rum ##ination on love
1) Break words into tokens

Tokenize

“a visually stunning rumination on love”

)

Figure 1:

Example of input processing for transformer architecture [IJ


https://huggingface.co/course/chapter6/5?fw=pt

2 Word2vec

2.1 Creating a tractable version of the problem

As we learned in the last lecture, the objective with word embeddings is to find vector
representations of each word such that similar words a,b € V produce similar embeddings
Uq, Up. An initial approach could be to set up the optimization problem

ULy Un, V1,0 Un

arg max Z log p(olc)

where
exp (u] v.)

weVvV eXp (u;vc)

p(ofe) = 5

The intuition for this approach stems from clustering: we want words that are roughly
interchangeable in context to be placed near each other in the embedding. However, unlike
K-means, our set of words is fixed, meaning we don’t have to worry about fitting new words
in (although we could always do this by recomputing as before).

One large problem with this approach is that when we attempt to run gradient descent,
the denominator of the probability function is extremely costly to compute with a large
vocabulary. To mitigate this, we can consider redefining the problem as something closer to
binary classification. To do so, let’s try a new probability function

1
p(o is the right word|c) = o(u, v.) = T oxp (—u7 o)

The problem with this approach, however, is that it consists of only positive examples!
Therefore, the optimization algorithm is incentivized to make all the embeddings line up to
achieve really high probabilities. To address this, we can add

1
p(w is the wrong word|c) = o(—u, v.) = T oxp (uT o))

and optimize the function

arg max log p(o is right | ¢) + log p(w is wrong | c))
But this runs into the same problem as before! Now we're just summing over a huge number
of negative examples, and the loss from these could just dominate. In order to balance this
tug of war, we can instead just randomly sample a few words to be used for the “w is wrong”
negative examples. This approach incorporates both an attractive force for words that occur
together (push v. towards u,) and a repulsive force for those that do not (push v, away from
vectors ), and we are left with our Word2vec optimization problem

arg  max Z (log o(u) ve) + Z log a(—ugvc))

ULy Un,yV1, Un
c,0

2



2.2 Interpreting the learned embeddings

After the development of Word2vec, researchers began to look at the actual embeddings to
find if any interesting properties were present that might reflect the underlying structure of
a language. After some exploration, they discovered that algebraic relations seemed to have
some meaning with the embeddings. For example,

vec(“woman”) - vec(“man”) =~ vec(“aunt”) - vec(“uncle”)

vec(“woman”) - vec(“man”) =~ vec(“queen”) - vec(“king”)

WOMAN
/, AUNT QUEENS
MAN /
UNCLE KINGS
QUEEN \ QUEEN
KING KING

(a) Gendered pairs have
matching differences

(b) Plurality is captured
similarly

Figure 2: Visualization of grammatical structure in the embedded space [2]

While these relationships are slightly idealized, the learned embeddings from Word2vec were
able to capture a surprising amount of grammatical structure. Realizing this, researchers
started to use the model to solve analogies (i.e. If women — man, aunt — 7). In practice,
this returned a mix of nonsense responses and some actually interesting results.

Relationship
France - Paris

Example 1 Example 2 Example 3
Florida: Tallahassee
quick: quicker

Kona: Hawaii

Italy: Rome
small: larger
Baltimore: Maryland

Japan: Tokyo
cold: colder
Dallas: Texas

big - bigger
Miami - Florida

Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer
Japan - sushi

Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

Figure 3: Examples of Word2vec’s performance on more complex analogies [2]




Aside: Following this, concerns began to develop around whether all the stuff the
embeddings were learning was desired (e.g. was it learning sexist/racist/homophobic
ideas from the training data). To address this issue, researchers tried going through
datasets to censor out nasty unwanted training points and applying data augmentation
to make the embeddings invariant to these regularities. However, this is still a field of
ongoing interest, as these approaches may not be enough.

3 Pretrained Language Models

3.1 Contextual representations

One big advantage of word embeddings over one-hot encodings is the incorporation of latent
information about the language/word that might otherwise have to be learned by a down-
stream model. However, since the embeddings are constant in word2vec, the same word used
in two different contexts will produce the same embedding.

Let's play baseball | saw a play yesterday

Figure 4: Same word in two difference contexts [2]

This implies that we need some form of context-specific representation for our model. In
order to address this problem, we can

1. Train a language model on a surrogate task
2. Run it on a sentence
3. Take the hidden state from the model and treat it as the embedding

But this raises the complication: how do we train the best language model to get a high-
quality embedding? What architecture should we use, and how does the surrogate task affect
performance?

One approach is to train on the task of predicting the next word in a sentence while using
a decoder-style transformer architecture (autoregressive idea used by GPT). However, since
we don’t want the attention mechanism to just be able to look ahead in the sentence and
know exactly what to output, we have to implement masked self-attention. In practice,
this is done by setting the relevant inner products to negative infinity, which reduces the
contribution of their values to zero via the softmax.

Masked self-attention works for many tasks but introduces an interesting limitation: the
model can only build context for a word by attending to the ones that came before it. In
Word2vec, however, we were able to look at things on both sides of the center word to build
context. How can we do something similar here?

4



3.2 Bidirectional Transformer Language Models

N ~ ~ ~ e T T
Y1 Y2 Yz, Ya Yoo Y1 Y2 Y3

———

no need to shift

“.l I".‘ output by one
RNARAN 1

1
position-wise nonlirear

= ALy =z network of transformer
E‘ T T | T } T (the decoder part o with 15% of
g \ \ \ of a transformer) "é inputs replaced
s | masked self-attention 2 .—.—.a,:“_d self—attentlon with [MASK]
—_ S
Voo '
randomly
position-wise encoder position-wise encoder mask out
T T I" T ! need masking to 1 I T T input tokens
i i revent lookin
Po| P p2j PSJ P ahead 8 po[ 101[ D2 pg[
Tog T1 Ta T3

Tog W, T2 T3

(b) Bidirectional transformer used in BERT

(a) One-directional transformer used in GPT

Figure 5: Differences between popular transformer-based language models [2]

We can modify our approach by changing the surrogate task! Instead of predicting the next
word, we can mask out a small percentage of the input (replace with a [MASK] token) and
train the model on predicting what those words would have been. This self-supervised task
is very similar to what we did with masking in autoencoders, which we analyzed under the
lens of low-rank approximation using PCA. Due to this change, we no longer need masked

self-attention, and the model can build context for a given token using input that both
precedes and follows it.

It is also important to distinguish that there are two losses we can use here: loss based on the
predictions for the masked tokens, and loss for the rest of the sequence. It is critical to find
a balance here, as letting the second option apply too much gradient pressure would result
in the model just learning the identity function and giving up on the masked predictions

So in practice, the main goal is just to fill in the blanks, although BERT did modify this
scheme slightly to find the right balance.

While BERT was training, not all of the 15% of tokens were actually replaced with the
corresponding [MASK] token. While 80% of them still were, 10% were instead replaced with
some random wrong word (similar to a denoising autoencoder), and the remaining 10% were
just the correct word unchanged [3]. By leaving the token as is sometimes, we allow the
second loss from above to apply a small amount of gradient pressure. This encourages the

model to also take into account the current token, rather than being entirely context based
and strikes the appropriate balance between the two losses.



3.3 Training BERT

While training BERT (as seen in Figure 4a), the researchers took an additional step to try
and force the model to learn sentence-level representations. They passed in two sentences
at a time, separated by a [SEP] token, and randomly swapped the order of the sentences
50% of the time. They then added a surrogate binary classification task, denoted Next
Sentence Prediction or NSP, and asked it to predict if the sentence order had been swapped
or not (in addition to the previously stated task). In order to accomodate for this extra
task, the researchers added a special [CLS] token at the start of each sentence pair, with its
corresponding output from BERT being the output for the NSP task. This little tweak during
pretraining turned out to be very beneficial for downstream tasks like question answering
and natural language inference, as the model was forced to learn both context-dependent
word-level and sentence-level representations.

Aside: Some people have tried using Word2vec as a starting point for the token-
to-vector encoding for models like BERT, but it isn’t an exact match since not all
tokens are words. While they often are, these models have some token budget they
must stay within, so sometimes complicated /rare words are broken up. Check out
https://beta.openai.com/tokenizer for an example of how OpenAl’s GPT family
of models process text into tokens.

4 Fine-Tuning
4.1 Using BERT

When it comes to actually trying to use BERT on some downstream task, we can think
back to what we did with PCA: use an autoencoder approach, train the model, chop off the
decoder part, and just use the embedding produced by the encoder on something new. The
same works with BERT! One example would be entailment classification, or whether or not
one sentence is logically a consequence of another. Since this is more related to the NSP
task from training, we can cut off whatever classifier /linear-layer was used to make the NSP
prediction, pass the embedded representation that BERT built to a new model, and train
on our entailment task. However, now we have two options for this last fine-tuning step:

1. Freeze BERT and only train whatever classifier we’ve added at the end: This approach
is similar to how we thought about the autoencoder in the PCA context. The entire
encoding network is frozen and can be thought of as some input featurization for the
final component to run inference on.

2. Train BERT end-to-end on the new task: Sometimes this approach of fine-tuning the
entire model works better, but it also takes significantly more compute. In addition,
the ratio of unlabeled to labeled data is often enormous, so trying to train such an
over-parameterized network on a small set of labeled data may not be worthwhile.


https://beta.openai.com/tokenizer

4.2 Additional Tasks

Since the above procedure only really uses the first output from BERT, it is natural to
wonder what uses the other outputs might have. It turns out that BERT is useful for many
tasks, it simply depends on which components the user wants to use.

Cla:

o &)
BERT

[efe]- [s]lem]l=]

@ Ma;LM MazLM \ _— @
[ T, ] | TN I T | My} Bentence2 Single Sentence

(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, S8T-2, ColA
RTE, SWAG

BERT - —

) G
[fen |l & ] (B ][ Esem]l & ] [&]
——————O————— BERT
s || vokr | . Tok N [SEP) | Tkt | . TokM E EE E
=0 A=
Masked Sentence A Masked Sentence B
' Question Paragraph Single Sentence
Unlabeled Sentence A and B Pair (¢) Question Answering Tasks: (d) Single Sentence Tagging Tasks:
SQuAD v1.1 CoNLL-2003 NER
(a) BERT model during training (b) BERT model during fine-tuning. Utilized

outputs depend on use case

Figure 6: BERT model during training vs fine-tuning [2]

As seen in Figure 4b, we can build on top of the class label for classification tasks like above,
or we can also select different outputs depending on the given task. For example, if we are
trying to identify the span of contents in a paragraph that answer a given question, we can
pass in the question followed by a separator token and the paragraph. We can then build on
top of the outputs from the paragraph and fine-tune a model to choose the start/end of the
span. The final example in the figure is entity-labeling, or identifying things like people’s
names, locations, and other categories.

4.3 Using BERT for feature generation

One question that may arise is how to use BERT to get features like we did with Word2vec.
Since BERT has many layers, we have a choice of which hidden state to use. In practice,
it is worth testing out the embedding from different layers, as well as the sum of different
layers, to find the best possible contextualized representation. This idea is visualized below.
More info can also be found at http://jalammar.github.io/illustrated-bert/.


http://jalammar.github.io/illustrated-bert/

What is the best contextualized embedding for “Help” in that context?

Dev F1 Score

T First Layer I | 91.0
b Last Hidden Layer T 94.9
[ | ]
- Sum All 12 . 955
Layers + .
[IT1T11
| 1]
d
Second-to-Last
Hidden Layer - 956
111 i
S Last F
um Last Four i
Hidden EEPEI 95.9
I I |
| 11
Hel
Concat Last T 96.1

Four Hidden

Figure 7: Representation scores of possible choices for embedding [4]

Aside: When exploring this, one may find the second-to-last layer works better than
the last for feature generation. While the exact reason is up for debate, intuition
for this could be that the last layer is more specific to the surrogate task while the
second-to-last layer contains more general information.

5 Surprising Results With GPT

In the problem of text generation, we give the model some input for context and ask it to
spit out a continuation (e.g. given the first paragraph, finish this article). Due to BERT
being bidirectional and trained with context on both sides, it is not particularly suited or
well-performing in this task. However, this problem is perfect for autoregressive models like
the one-directional transformer architecture used in GPT (partially visualized in Figure 3a).

In fact, we can frame many tasks as text generation and see how GPT performs without
any additional training (and therefore without performing further gradient descent). For
the example of machine translation, one could input “The translation of ‘she’ to Spanish is
‘ella’. The translation of ‘ball’ to Spanish is...” to GPT, and find that it would return the
correct translation (‘pelota’) more times than just luck would suggest. The implications of
such properties are still being figured out.

Food for thought: How would you frame the task of article summary to GPT?




References

[1] Alammar, J (2018). A Visual Guide to Using BERT for the First Time. https:
//jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

[2] Levine, Sergey. NLP Applications: CS 182 Lecture Slides. https://cs182sp21.github.
io/static/slides/lec-13.pdf

[3] Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
https://arxiv.org/abs/1810.04805

[4] Alammar, J (2018). The lustrated Bert, ELMo, and co. [Blog post]. Retrieved from
http://jalammar.github.io/illustrated-bert/

What we wish this lecture also had to make things clearer

The slides and the visuals were great, but we think the mechanics of byte pair encoding
got somewhat brushed over. We would also have liked to see some visuals for BERT word
embeddings similar to the ones we got for Word2vec, as well as a brief exploration of the
main idea behind ELMo.


https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://cs182sp21.github.io/static/slides/lec-13.pdf
https://cs182sp21.github.io/static/slides/lec-13.pdf
https://arxiv.org/abs/1810.04805
http://jalammar.github.io/illustrated-bert/

	Tokens
	Word2vec
	Creating a tractable version of the problem
	Interpreting the learned embeddings

	Pretrained Language Models
	Contextual representations
	Bidirectional Transformer Language Models
	Training BERT

	Fine-Tuning
	Using BERT
	Additional Tasks
	Using BERT for feature generation

	Surprising Results With GPT

